One Partition Cages

Target	No. Cells	Partition
39	6	987654
38	6	987653
35	5	98765
34	5	98764
30	4	9876
29	4	9875
24	3	987
23	3	986
22	6	754321
22	5	75432
21	6	654321
17	2	98
16	5	64321
16	2	97
15	5	54321
11	4	5321
10	4	4321
7	3	421
6	3	321
4	2	31
3	2	21

Two Partition Cages

Target	No. Cells	Partitions	
37	6	987652	987643
33	5	98763	98754
28	4	9874	9865
23	6	854321	764321
22	3	985	976
17	5	74321	65321
12	4	6321	5421
8	3	521	431

Illustrative Examples
A. There is only one way that 3 digits sum to 7 : $4+2+1$.
B. There are two ways that 3 digits sum to $8: 5+2+1$ and $4+3+1$.

There is little point in treating cages of more than 6 cells. For example, suppose a 7 -cell cage has target 38. This means 2 digits that sum to 7 do not belong to the cage. They can only be $6+1,5+2$, or $4+3$, so the problem becomes eliminating two of these possibilities. In fact, I would spend no time on it: such a large cage intersects several rows and columns, so I would use row and column uniqueness to solve the intersections.

